전체 글317 [고전역학] 강체의 운동에너지, T=wJ/2 먼저 쉽게 질점 부터 생각해보겠습니다. 하나의 질점이 있습니다. 이 질점의 운동에너지는? '이분의 일 엠 브이 제곱' 입니다. 그런데 그 질점이 임의의 회전축을 중심으로 회전하고 있다면 속도 v = w x r (cross product, w:각속도, r:위치벡터)이고 다음과 같습니다. 이 식을 강체에 써먹자니 각각의 질점은 모두 같은 각속도를 가지지만 위치가 다 달라 r벡터가 달라 각 질점에 대한 T를 구해 다 더해야합니다. 이를 뭔가 해당 강체의 질점분포를 대표하는 관성텐서로 표현한다면 쉽게 강체의 운동에너지를 구할 수 있습니다. 그 식은 아래와 같습니다. 관성모멘트는 각운동량에 포함되어 있습니다! 자세한 유도식은 필기로 첨부하겠습니다. 감사합니다. 출처) 한양대 KOCW 신상진 교수님 고전역학2 수업.. 2020. 5. 14. [고전역학] 대각화 : 주축(Principal axis)로 축을 회전시키다. 관성 텐서에 있어서 대각화란 한마디로! 축이 정해지지 않은 상태인 관성텐서를 혹은 임의의 축에 대한 관성 텐서를 우리가 원하는 주축에 대한 관성텐서로 변형하는 것입니다. 예를 들면 다음과 같습니다. 위 그림에서처럼 타원에서 임의의 점선의 축을 실선의 주축으로 회전시키는 것이 수학적으로 대각화입니다. 원기둥모양의 강체에서 마찬가지로 임의의 축, 점선축을 주축인 실선축으로 회전시키는 것입니다. 대각화하기 위한 조건과 대각화의 효과 대각화를 하기 위해서는 행렬이 Symmetric 해야합니다. 즉, 관성텐서가 Symmetirc할 때 대각화, 주축으로 회전을 시킬 수 있고 그 결과로 관성텐서는 3개의 component만 남게 됩니다. 마치 벡터처럼 말입니다. 정리 벡터는 3개 요소로 구성되며 3차원 공간에서 시각.. 2020. 5. 14. 미분형 선형운동량 방정식, 왜 필요해? 선형운동량방정식은 검사체적, 미분을 이용해 각각 나타낼 수 있습니다. 검사체적 선형운동량방정식 유체의 운동을 관찰하고 그로부터 유체의 움직임에 의해 수로관이나 비행기의 날개가 받는 힘을 우리는 유체의 선형운동량방정식을 통해서 구할 수 있습니다. 예를 들어서 유체가 흐르는 수로관이 있습니다. 유체가 흐르기 때문에 수로관을 고정시키기 위한 힘을 알면 효율적으로 수로관 고정 설계를 할 수 있습니다. 이 때는 수로관 내부의 세세한 유동보다는 수로관 입출입구의 표면에서의 조건들만을 이용해 그 힘을 구할 수 있습니다. 이것이 바로 유동 내부보다는 검사체적의 표면에 집중한 선형운동량방정식이며 대부분의 경우 이러한 방법을 적용할 수 있습니다. 미분형 선형운동량 방정식 하지만 유체가 파이프 내부에서 속도가 어떻게 변하는.. 2020. 5. 13. 허리디스크 4년차, 대학생의 허리디스크치료법 -허리디스크의 증상은 무엇인가? -병원에서 지속적으로 치료를 받아야 하는지? -허리디스크 통증은 어떻게 줄일 수 있는지(시기별, 통증별) -허리디스크 완치에는 얼마나 걸리는지? : 관리하기에 달렸지만 저의 경우 1,2년 정도 지났을 때 이정도면 완치한 것 같다고 생각했습니다. 모든 내용은 저의 경험을 바탕으로 합니다. 4년전 급작스러운 허리디스크로 한달간 일어서기조차 힘들었던 때에 위의 질문들을 검색했지만 속시원한 글을 보진 못했던 것 같습니다. 이 글이 많은 사람들에게 도움이 되길 바랍니다. 수능이 끝난 직후 한번씩 의자에 앉기 불편한 정도의 통증을 느꼈지만 대수롭지 않게 넘겼고 그 후 약 1년뒤 갑작스럽고 심한 허리통증을 느꼈습니다. 그대로 바닥에 눕고는 일어서질 못했고 약 2주간은 누워서 밥을 먹었.. 2020. 5. 13. [고전역학] 관성 텐서(inertia tensor)와 관성모멘트(I=mr^2)의 관계, 각운동량 J=Iw 유도 쉽게 쉽게!!! 우리가 흔히 공식으로 쉽게 쓰는 관성모멘트는 아래와 같죠 이렇게 공식으로 쓰는 이 관성모멘트는 모두 회전축과 일치하고 강체의 중앙을 축으로하는 매우 적절한 축에 대해 정의된 것입니다. 이는 축이 정의되지 않은, 정해지지 않은, 어떠한 축에 대해서도 유효한 관성모멘트 텐서(inertia tensor)로부터 적절한 축을 정해 그 축에 대한 질점 혹은 강체의 관성모멘트를 얻은 것입니다. (관성텐서를 정의할 때 축을 조건하지 않음을 알 수 있습니다. 핵심을 먼저 요약한 뒤 글의 마지막에 유도식을 첨부했습니다.) 관성텐서는 다음과 같이 정의됩니다!! 여러 질점이 모인 강체에 대한 관성텐서는 각각의 질점에 대한 관성텐서를 다 더한 것입니다. 우선 예를 들어 한번 적용함으로써 ij가 어떤 의미인지, .. 2020. 5. 13. 유동함수를 통해 유량을 계산하고 원통좌표계로 표현하기 정상, 비정상, 압축성, 비압축성 모두에서 유효한 연속방정식에서 시작합니다. 가정. 정상상태, 비압축성, 평면(2차원)유동 여기서 정상상태, 비압축성, 평면, 즉 2차원 유동으로 가정합니다. 이는 가장 단순하면서도 실제에 유용하며 파이프 운동이나 회전 물체 주위의 유동과 같은 축대칭 유동과 2차원 압축성 유동들에 대해서 적용되는 유동함수를 유도하기 위함입니다. 위 가정으로 연속방정식이 어떻게 간단화되는지 보겠습니다. 먼저 정상상태이므로 첫째항인 밀도의 시간 편미분은 0이됩니다. 또, 비압축성이기 때문에 둘째항의 밀도가 결과적으로 없어집니다. 그러면 아래와 같이 됩니다. 또 여기서 마지막으로 2차원 유동이므로 z축을 고려하지 않습니다. 그러면 아래와 같이 됩니다. 여기서 스칼라값인 유동함수를 정의할 것입니.. 2020. 5. 11. 질량보존법칙에서 연속방정식을 유도하고 미분형으로 나타내기 흐르는 유체에서 특정 질량의 유체를 시스템으로 정의하면 그 시스템의 질량은 당연히 변하지 않습니다. 이를 지난 글에서 다룬 물질미분으로 표현하면 다음과 같습니다. 이제 레이놀즈수송정리를 이용해 유체를 더 이해하기 쉽게하기 위해 검사체적을 가져오겠습니다. 초기 시스템의 체적을 검사체적으로 잡고 그 검사체적을 시간에 따라 변하지 않는다고 가정하겠습니다. 아래의 그림을 보면 시스템(임의의 질량의 관심 유체)이 처음에는 빨간모양으로 있습니다. 이 때의 부피를 검사체적으로 잡으면 시간이 지나 유체가 흐른뒤의 시스템은 파란색이고 검사체적은 공간에 고정되어 있으므로 빨간색입니다. 이 때, 시스템의 질량은 여전히 변함이 없으며 이를 검사체적을 통해 나타낼 수 있습니다. 따라서 (시스템의 총질량 변화) = (검사체적 내.. 2020. 5. 11. [고전역학] 강체의 회전(1) : 3차원, 크기와 방향이 변하는 각속도 회전축을 중심으로 회전하는 강체의 하나의 질점을 밖에서 본 속도는 위의 식과 같다. 크기가 일정하고 방향이 일정한 각속도는 그냥 저식을 쓰면 된다. 하지만 각속도의 크기와 방향이 시간에 따라 변한다면 그 각속도는 어떻게 우리가 정의할 수 있을까 핵심은 매순간 변하는 각속도를 변하기 전의 각속도의 방향좌표를 이용해 나타내는 것이다. 이렇게 한다면 하나의 좌표축으로 변하는 각속도를 계속해서 표현할 수 있다. 바로 시작해보자 위와 같이 강체의 각속도가 변한다. 매순간 강체에 올라탄 관점에서 r은 속도가 없으며 밖에서 본 r의 속도는 그 순간의 각속도와 위치벡터의 외적이다. 문제는 이 w가 변하는 것이고 우리는 이를 e벡터로 계속해서 나타내고 싶은 것이다. 교수님의 말씀을 인용하면 더 이해가 쉬울 것 같다. 즉.. 2020. 5. 10. [고전역학] 라머효과 : 전기장에서의 자기모멘트 전기장에서 자기모멘트가 있을 때 자기 모멘트는 기하하적 중심을 기준으로 회전한다. 전기에 대해서 잘 모르지만 이는 팽이로 비유할 수 있다.(전기장을 중력장으로, 자기모멘트를->각운동량으로) 중력장에서 팽이가 임의의 각운동량을 갖고 회전하고 있다. 3차원에서의 각운동량은 텐서와 벡터의 곱으로 나타내어진다.(다음 글에 포스팅 예정) 텐서와 벡터의 곱으로 나타내는 과정에서 축은 정의되지 않는데 따라서 어떠한 축에서도 각운동량을 정의할 수 있다. 그림과 같이 팽이의 회전축(주축, principle axis)에서 각운동량을 나타내면 각축에대해 깔끔한 각운동량을 구할 수 있다. 아무튼 다시 본론으로 들어가서 위 그림과 같이 주축에서 임의의 각운동량을 갖는 팽이는 중력장에 있으므로 중력힘을 받는데 정의에 따라 각운동.. 2020. 5. 8. [고전역학] 가우스법칙(2) : 중력장에 적용하고 지구내부의 퍼텐셜구하기 이전 글에서는 가우스법칙을 간단히 증명하였다. 오늘은 이 가우스법칙을 중력장에 적용하고 지구 내부의 퍼텐셜을 구해본다. 가우스법칙 증명 가우스법칙 : 어떤 가상의 곡면에 작용하는 총전기력(전기선속)은 그 곡면 안의 전하량에 비례한다. 이중적분에 동그라미는 닫힌 곡면을 이야기 합니다. 필요한 물리적 사전지식) 1. 전기선속(Electric flux) :.. needs-searcher.tistory.com 중력장의 Potential 함수 구하기 Potential Theory (퍼텐셜 이론) 지난번 뉴턴 1,2,3법칙의 연관성 글과 3차원에서의 에너지보존, 위치에너지 정의 글에서 퍼텐셜에너지를 다루었습니다. 역학적에너지 보존법칙과 위치에너지정의, 그리고 미분방정.. needs-searcher.tistory.c.. 2020. 5. 8. [고전역학] 가우스법칙 증명 가우스법칙 : 어떤 가상의 곡면에 작용하는 총전기력(전기선속)은 그 곡면 안의 전하량에 비례한다. 이중적분에 동그라미는 닫힌 곡면을 이야기 합니다. 필요한 물리적 사전지식) 1. 전기선속(Electric flux) : 어떤 가상의 곡면에 작용하는 총전기력 2. 전기장 : 공간상에 전하가 존재할 때, 그 전하에 의해 생기는 임의의 위치에서 받는 힘. 그리고 그 힘들을 공간에 표시한 벡터장. 3. 쿨롱의 법칙 필요한 수학적 사전지식) 1. 면적분 쿨롱의 법칙을 전제, 가정 후 간단한 경우부터 일반적인 경우로 확장합니다 증명1) 점전하 q가 반지름이 일정한 구의 한가운데 있을 때 증명2) 점전하 q가 임의의 곡면A 안에 위치할 때 증명3) 여러개의 점전하가 임의의 곡면 안에 존재할 때 가정. 전기장은 Vect.. 2020. 5. 8. [고전역학] 중력장의 Potential 함수 구하기 Potential Theory (퍼텐셜 이론) 지난번 뉴턴 1,2,3법칙의 연관성 글과 3차원에서의 에너지보존, 위치에너지 정의 글에서 퍼텐셜에너지를 다루었습니다. 역학적에너지 보존법칙과 위치에너지정의, 그리고 미분방정식 들어가기 전에, 역학의 목표이.. needs-searcher.tistory.com 에너지가 보존을 보이기 위해 위치에너지를 정의하고 위치에너지가 존재하기 위해서는 그 적분이 경로에 독립해야하며 경로에 독립하기 위해서는 Curl(F)=0이어야 했다. 그리고 Curl(F)=0에 필요충분한 조건이 F=-Gradient(V)였다. 이 조건들을 이용해 중력장이 보존장임을 보이고 임의의 위치에 있는 여러 질량 m_i에 의해 생기는 보존장의 퍼텐셜의 총합을 구해보자. 1.중력 중력은 두 질량 사이에.. 2020. 5. 7. 이전 1 ··· 22 23 24 25 26 27 다음